গণিত মজার সংখ্যা বিশ্লেষণ

গণিত মজার সংখ্যা বিশ্লেষণ


গণিত ও সংখ্যাকে বলা হয় মহাজগতের ভাষা। গণিত আছে বলেই আমরা জগতের অনেক কিছুর ব্যাখ্যা জানি। গণিত এবং সংখ্যা বিষয় জানতে গেলে প্রথম চলে আসে অংক।

অংক: কোন সংখ্যা তৈরি হয় অংক (digit) দিয়ে। মোট অংক হলো ১০টি – ০, ১, ২, ৩, ৪, ৫, ৬, ৭, ৮, ৯। সংখ্যা যত ছোট হোক বড় হোক না কেন, এই ১০টি সংখ্যা দিয়েই তা তৈরি হয়। যদি আপনাকে জিজ্ঞেস করা হয় ৪৫ কি সংখ্যা না কি অংক। নিশ্চয়ই আপনার উত্তর হবে ৪৫ একটি সংখ্যা যা ৪ এবং ৫ দুটি অংক দিয়ে গঠিত। অংকগুলোকে দুইটি প্রধান ভাগে ভাগ করা যায়।

১। জোড় সংখ্যা (Even Number): যে সকল সংখ্যা ২দ্বারা বিভাজ্য তাদেরকে জোড় সংখ্যা বলে। যেমন:- ২, ৪, ৬, ৮, ১০ ইত্যাদি। জোড় সংখ্যাগুলোকে যুগ্মসংখ্যাও বলা হয়।

২। বিজোড় সংখ্যা (Odd Number): যে সকল সংখ্যা ২দ্বারা বিভাজ্য নয় তাদেরকে বিজোড় সংখ্যা বলে। যেমন:- ১, ৩, ৫, ৭, ৯ ইত্যাদি। বিজোড় সংখ্যাগুলোকে অযুগ্ম সংখ্যাও বলা হয়।

 


সংখ্যা আবিষ্কারের ইতিহাস: সভ্যতার সূচনালগ্ন থেকেই মানুষ হিসাব-নিকাশের প্রয়োজনীয়তা অনুভব করে। তখন গণনার জন্য নানা রকম উপকরণ যেমন- হাতের আঙ্গুল, নুড়ি পাথর, কাঠি, ঝিনুক, রশির গিট, দেয়ালে দাগ কাটা ইত্যাদি ব্যবহার করা হতো। সময়ের বিবর্তনে গণনার ক্ষেত্রে বিভিন্ন চিহ্ন ও প্রতীক ব্যবহার শুরু হতে থাকে। খ্রিস্টপূর্ব ৩৪০০ সালে হায়ারোগ্লিফিক্স সংখ্যা পদ্ধতির মাধ্যমে সর্বপ্রথম গণনার ক্ষেত্রে লিখিত সংখ্যা বা চিহ্নের ব্যবহার শুরু হয়। পরবর্তিতে পর্যায়ক্রমে মেয়ান, রোমান ও দশমিক সংখ্যা পদ্ধতির ব্যবহার শুরু হয়।

সংখ্যার ইতিহাস: সংখ্যার ইতিহাস মানব সভ্যতার ইতিহাসের মতই প্রাচীন। পরিমাণকে প্রতীক দিয়ে সংখ্যা আকারে প্রকাশ করার পদ্ধতি থেকে গণিতের উৎপত্তি। গ্রিক দার্শনিক এরিস্টটলের মতে, প্রাচীন মিশরের পুরোহিত সম্প্রদায়ের অনুসরণের মাধ্যমে গণিতের আনুষ্ঠানিক অভিষেক ঘটে। আরও একজন প্রাচীন গ্রীক দার্শনিক, গণিতবিদ পিথাগোরাসের মনে করতেন মহাবিশ্বের সব সৌন্দর্যের রহস্য হচ্ছে সংখ্যা। তাই বলা যায় সংখ্যা ভিত্তিক গণিতের যীশু খ্রীষ্টের জন্মের প্রায় দুই হাজার বছর পূর্বে। এরপর নানা জাতীয় সভ্যতার হাত ধরে সংখ্যা ও সংখ্যারীতি আধুনিক একটি সার্বজনীন রূপ ধারণ করেছে।

সংখ্যাঃ সংখ্যা হচ্ছে এমন একটি উপাদান যা কোনকিছু গণনা, পরিমাণ এবং পরিমাপ করার জন্য ব্যবহৃত হয়। যেমন- দশম শ্রেণীতে ১২০ জন ছাত্র আছে; এখানে ১২০ একটি সংখ্যা।

সংখ্যাকে দুই ভাগে ভাগ করা হয়-

  • বাস্তব সংখ্যা (Real Number)
  • অবাস্তব সংখ্যা (Imaginary Number)

অবাস্তব সংখ্যা (Imaginary Numbers): কোনো সংখ্যাকে বর্গ করলে যদি ঋণাত্মক সংখ্যা পাওয়া যায়, তাহলে তাকে অবাস্তব সংখ্যা বলে। যেমন: √-2, √-5

(√-2)^2 = -2। বাস্তব সংখ্যার সাথে i থাকলে তা অবাস্তব সংখ্যা হয়, যেমন: 3i, 5i, 7i।

বাস্তব সংখ্যা (Real Number): ধনাত্মক সংখ্যা, ঋণাত্মক সংখ্যা এবং শূন্য (০) সবই বাস্তব সংখ্যা। যেমন :১, ০, ১৫, -৯, -২/

বাস্তব সংখ্যাকে দুইটি ভাগে ভাগ করা যায়-

  • মূলদ সংখ্যা (Rational Number)
  • অমূলদ সংখ্যা (Irrational Number)

অমূলদ সংখ্যা (Irrational number): যে সংখ্যাকে p/q আকারে প্রকাশ করা যায় না সে সকল সংখ্যাকে অমূলদ সংখ্যা বলে। অন্যভাবে, যে সমস্ত সংখ্যাকে দুইটি পূর্ণসংখ্যার অনুপাতে প্রকাশ করা যায় না, তাদেরকে অমূলদ সংখ্যা বলে। যেমন: √2, √3, √5 ইত্যাদি।

মূলদ সংখ্যা: যে সংখ্যাকে p/q আকারে প্রকাশ করা যায় সে সংখ্যাকে মূলদ সংখ্যা বলে অথবা আনুপাতিক সংখ্যা বলে। (যেখানে p ও q পূর্ণসংখ্যা)

মূলদ সংখ্যাকে আবার দুটি ভাগে ভাগ করা যায়-

  • পূর্ণ সংখ্যা
  • ভগ্নাংশ সংখ্যা

পূর্ণসংখ্যা (Integer): শূন্যসহ সকল ধনাত্মক ও ঋণাত্মক সংখ্যা কে পূর্ণ সংখ্যা বলা হয়। অর্থাৎ -3, -2, -1, 0, 1, 2, 3 ইত্যাদি পূর্ণ সংখ্যা।

পূর্ণ সংখ্যা তিন প্রকার-

  • ঋণাত্মক সংখ্যা (Negative Number)
  • শূন্য
  • ধনাত্মক সংখ্যা (Positive Number)

ঋণাত্মক সংখ্যা (Negative Number): শূন্য থেকে ছোট সকল বাস্তব সংখ্যাকে ঋণাত্মক সংখ্যা বলা হয়। যেমন: -২, -১/, -৩/, – √২, -০.৪১৫

শূন্য(০): প্রাচীন মিসরীয়রা শূন্যকে কেবলমাত্র একটি প্রতীক হিসেবে ব্যবহার করত এবং তারা এটাকে নফর (nfr) নামে ডাকত, যার অর্থ সুন্দর। কিন্তু শূন্য তখনো সংখ্যার মর্যাদা পায়নি। মূলত শূন্য হলো সকল সংখ্যার ভিত্তি ও শূন্যের ব্যবহার ছাড়া বীজ গাণিতিক সমীকরণ লেখা সম্ভব নয়। শূন্যকে সংখ্যা হিসেবে প্রথম ব্যবহার করেন প্রাচীন ভারতীয় গণিতবিদেরা। সর্বপ্রথম ভারতীয় উপমহাদেশের আর্যভট্ট (৪৭৫-৫৫০ খ্রিঃ) ‘০’ (শূন্য)-এর প্রথম ধারণা দেন। ব্রহ্মগুপ্ত (৫৯৮-৬৬৫ খ্রিঃ) শূন্য আবিষ্কার করেন।

শূন্য (০) একটি স্বাভাবিক পূর্ণ সংখ্যা। শূন্য ধনাত্মক, ঋণাত্মক কোনটিই নয়। ‘০’ (শূন্য) কে সাহায্যকারী অঙ্ক বলা হয়। যার নিজের কোন মান নেই।

ধনাত্মক সংখ্যা (Positive Number): শূন্য থেকে বড় সকল বাস্তব সংখ্যা কে ধনাত্মক সংখ্যা বলা হয়। যেমন: ২, /, / ইত্যাদি ধনাত্মক সংখ্যা।


ভগ্নাংশ সংখ্যা (Fractional Number): pq আকারের কোনো সংখ্যাকে (সাধারণত) ভগ্নাংশ সংখ্যা বা সংক্ষেপে ভগ্নাংশ বলা হয়। যেখানে q=(≠)0 এবং q=(≠) 1। যেমন- , , -৫, ইত্যাদি (সাধারণ) ভগ্নাংশ সংখ্যা।

ভগ্নাংশ সংখ্যা দুই প্রকার-

  • সাধারণ ভগ্নাংশ ()
  • দশমিক ভগ্নাংশ (১.৩৩৩…)

সাধারণ ভগ্নাংশ: সাধারণ ভগ্নাংশ হল একটি সংখ্যা যা দুটি সংখ্যার মাধ্যমে প্রকাশ করা হয়, একটিকে লব এবং অন্যটিকে হর বলা হয়। লব হল ভগ্নাংশের উপরের সংখ্যা এবং হর হল ভগ্নাংশের নীচের সংখ্যা। সাধারণ ভগ্নাংশকে সাধারণত একটি রেখা দিয়ে বিভক্ত করা হয়, লবটি রেখার উপরে এবং হরটি রেখার নীচে লেখা হয়।

সাধারণ ভগ্নাংশকে দুটি ভাগে ভাগ করা যেতে পারে:

  • প্রকৃত ভগ্নাংশ
  • অপ্রকৃত ভগ্নাংশ।

প্রকৃত সাধারণ ভগ্নাংশ হল এমন সাধারণ ভগ্নাংশ যার লব হরের চেয়ে ছোট। যেমন, /১০, / ইত্যাদি। এই ভগ্নাংশগুলিকে ঠিক ভাঙা টুকরো বা ভাঙা অংশ বোঝায়।

অপ্রকৃত সাধারণ ভগ্নাংশ হল এমন সাধারণ ভগ্নাংশ যার লব হরের চেয়ে বড় বা সমান। যেমন, /, / ইত্যাদি। এই ভগ্নাংশগুলিকে ঠিক ভাঙা টুকরো বা ভাঙা অংশ বোঝায় না; বরং আগের অংশের চেয়ে বড় বোঝায়।

উদাহরণ

  • প্রকৃত সাধারণ ভগ্নাংশ: /১০, /, /, /, / ইত্যাদি।
  • অপ্রকৃত সাধারণ ভগ্নাংশ: /, /, /, ১০/ ইত্যাদি।

প্রকৃত সাধারণ ভগ্নাংশের বৈশিষ্ট্য

  • প্রকৃত সাধারণ ভগ্নাংশকে পূর্ণসংখ্যায় রূপান্তর করা যায়।
  • প্রকৃত সাধারণ ভগ্নাংশের লব হরের চেয়ে ছোট।

অপ্রকৃত সাধারণ ভগ্নাংশের বৈশিষ্ট্য

  • অপ্রকৃত সাধারণ ভগ্নাংশকে পূর্ণসংখ্যায় রূপান্তর করা যায় না।
  • অপ্রকৃত সাধারণ ভগ্নাংশের লব হরের চেয়ে বড় বা সমান।

দশমিক ভগ্নাংশ (Decimal Fractions): প্রত্যেক বাস্তব সংখ্যাকে দশমিক ভগ্নাংশে প্রকাশ করা যায়। যেমন: ২=২.০, /=০.৪, /=০.৩৩৩…ইত্যাদি।

দশমিক ভগ্নাংশ তিন প্রকার-

  • সসীম দশমিক ভগ্নাংশ
  • আবৃত দশমিক ভগ্নাংশ
  • অসীম দশমিক ভগ্নাংশ

সসীম দশমিক ভগ্নাংশ: কোনো সসীম দশমিক ভগ্নাংশে দশমিক বিন্দুর ডান দিকে সসীম সংখ্যা থাকে। যেমন: 0.12, 1.023, 7.832….ইত্যাদি সসীম দশমিক ভগ্নাংশ।

আবৃত দশমিক ভগ্নাংশ: কোন আবৃত্ত দশমিক ভগ্নাংশের দশমিক বিন্দুর ডানদিকের অংক গুলোর সব অথবা পরপর থাকা কিছু অংশ বারবার আসতে থাকে থাকে। যেমন: 3.333,,,,,,, 2.454545…..,5.12765756 ইত্যাদি আবৃত্ত দশমিক ভগ্নাংশ।

অসীম দশমিক ভগ্নাংশ: কোনো অসীম দশমিক ভগ্নাংশে দশমিক বিন্দুর ডানদিকের অংক কখনো শেষ হয় না অর্থাৎ দশমিক বিন্দুর ডান দিকের অংক গুলো অসীম হবে না এবং অংশবিশেষ বরাবর আসবেনা। যেমন: √2=1.4142135624….., √7=2.6457513111…. ইত্যাদি অসীম  দশমিক ভগ্নাংশ ।

 

Recent Posts

ইনানী সি বিচ

বিশ্বের দীর্ঘতম বালুকাময় ১২০ কিলোমিটার সমুদ্র সৈকত কক্সবাজার। কক্সবাজার থেকে টেকনাফ পর্যন্ত সমুদ্র সৈকতের মধ্যে ইনানী বীচ সবচেয়ে সুন্দর এবং… Read More

4 days ago

Inani Sea Beach

The world’s longest 120-kilometer sandy sea beach is Cox’s Bazar. Among the stretch of beach from Cox’s Bazar to Teknaf,… Read More

4 days ago

সুগন্ধা বিচ

কক্সবাজার সমুদ্র সৈকতের সব থেকে জনপ্রিয় একটি বিচ সুগন্ধা বিচ। কক্সবাজারের কাছে হওয়ায় এবং হোটেল, রিসোর্ট, রেস্টুরেন্ট এবং লাবনী পয়েন্ট… Read More

3 weeks ago

Sugondha Beach

Sugandha Beach is one of the most popular beaches in Cox’s Bazar. Its popularity is due to its proximity to… Read More

3 weeks ago

লাবনী পয়েন্ট

কক্সবাজার শহর থেকে নৈকট্যের কারণে লাবনী বিচ অথবা লাবনী পয়েন্ট পর্যটকদের কাছে প্রধান সমুদ্র সৈকত বলে বিবেচিত হয়। কলাতলী বিচ… Read More

4 weeks ago

Laboni Point

Due to its close proximity to Cox’s Bazar city, Laboni Beach or Laboni Point is considered the main beach by… Read More

4 weeks ago